top of page
  • Martínez, M.; Orchard, M.; Bozhko, S.; Wheeler, P.; Burgos-Mellado, C., "Distributed Control Scheme for the Coordination of Interlinking Converters in Islanded Hybrid AC/DC Multi-Microgrids," IEEE Open Journal of the Industrial Electronics Society, (accepted).

  • Chen, S.; Yang, R.; Zhong, M.; Xi, X.; Orchard, M., "FWRF: Mitigating Redundant Features in Fault Diagnosis via Feature Weighted Random Forest," IEEE Transactions on Instrumentation and Measurement, Vol.74, no. 3519911, pp. 1-11, 2025. DOI:  https://doi.org/10.1109/TIM.2025.3550596

  • Ramírez, C.; Silva, J.; Tamssaouet, F.; Rojas, T.; Orchard, M., "Fault Detection and Monitoring using a Data-Driven Information-Based Strategy: Method, Theory, and Application," Mechanical Systems and Signal Processing, 228, 112403, 2025. DOI:  https://doi.org/10.1016/j.ymssp.2025.112403

  • García, J.; Baeza, C.; Brito, B.; Rivera, V.; Masserano, B.; Orchard, M.; Burgos, C.; Perez, A., "A Novel Data-driven Framework for Driving Range Prognostics in Electric Vehicles," Engineering Applications of Artificial Intelligence, Vol. 142, 15, 109925, 2025. DOI: https://doi.org/10.1016/j.engappai.2024.109925

  • Oróstica, K.; Mardones, F.; Bernal, Y.; Molina, S.; Orchard, M.; Verdugo, R.; Carvajal-Hausdorf, D.; Marcelain, K.; Contreras, S.; Armisen, R., "Advances in machine learning for tumour classification in cancer of unknown primary: A mini-review," Cancer Letters, Vol. 611, 217348, 2025. DOI:  https://doi.org/10.1016/j.canlet.2024.217348

  • Sánchez-Rivero, M.; Duarte-Mermoud, M.; Travieso-Torres, J.; Orchard, M.; Ceballos-Benavides, G., "Analysis of Fractional Order-Adaptive Systems Represented by Error Model 1 Using a Fractional-Order Gradient Approach," Mathematics,12(20), 3212, 2024. DOI:  https://doi.org/10.3390/math12203212

  • ​Ceballos, G.; Duarte-Mermoud, M.; Orchard, M.; Ehijo, A., "Enhancing the Pitch-Rate Control Performance of an F-16 Aircraft Using Fractional-Order Direct-MRAC Adaptive Control," Fractal and Fractional, 8, 338, 2024. DOI: https://doi.org/10.3390/fractalfract8060338

  • Gutierrez, J.M.; Astroza, R.; Jaramillo, F.; Orchard, M.; Guarini, M., "Evolution of modal parameters of composite wind turbine blades under short- and long-term forced vibration tests," Journal of Civil Structural Health Monitoring, 2024. DOI:  https://doi.org/10.1007/s13349-024-00773-1

  • Muxica, D.; Rivera, S.; Orchard, M.; Ahumada, C.; Jaramillo, F.; Bravo, F.; Gutierrez, J.M.; Astroza, R., "Autonomous Sensor System for Wind Turbine Blade Vibration Measurement and Structural Health Monitoring," Sensors, 24(6), 1733, 2024.
    DOI: https://doi.org/10.3390/s24061733

  • Vicuña, M.; Silva, J.; Mendez, R.; Orchard, M.; Espinosa, S.; Tregloan-Reed, J., "Optimal photometry of point sources: Joint source flux and background determination on array detectors - from theory to practical implementation," Publications of the Astronomical Society of the Pacific, Vol. 136, 014501, 2024. DOI:  https://doi.org/10.1088/1538-3873/ad0ca3

  • ​Jara, C.; Orchard, M.; Devia, C., "Exploring the Benefits of Images with Frequency Visual Content in Predicting Human Ocular Scanpaths using Artificial Neural Networks," Expert Systems with Applications, Vol. 239, 121839, 2024. 
    DOI:  https://doi.org/10.1016/j.eswa.2023.121839

  • Martinez-Gomez, M.; Orchard, M.; Bozhko, S., “Dynamic Average Consensus with Anti-windup applied to Interlinking Converters in AC/DC Microgrids under Economic Dispatch and Delays,” IEEE Transactions on Smart Grid, Vol. 14, Issue 5, pp. 4137-4140, 2023. 
    DOI:  https://doi.org/10.1109/TSG.2023.3291208

  • Peña-Ancavil, E.; Estevez, C.; Sanhueza, A.; Orchard, M., "Adaptive Scalable Video Streaming (ASViS): An Advanced ABR Transmission Protocol for Optimal Video Quality," Electronics, Vol. 12, Issue 21, 4542, 2023. DOI:  https://doi.org/10.3390/electronics12214542

  • Kordestani, M.; Mousavi, M.; Chaibakhsh, A.; Orchard, M.; Khorasani; K.; Saif, M., "A New Compressor Failure Prognostic Method Using Nonlinear Observers and a Bayesian Algorithm for Heavy-Duty Gas Turbines," IEEE Sensors Journal, Vol. 23, no. 4, pp. 3889-3900, 2023. 
    DOI:  https://doi.org/10.1109/JSEN.2022.3233585

  • Videla, M.; Mendez, R.; Silva, J.; Orchard, M., "Optimal observational scheduling framework for binary and multiple stellar systems," Publications of the Astronomical Society of the Pacific, Vol. 135, 014501, pp. 1-19, 2023. DOI:  https://doi.org/10.1088/1538-3873/acaebc

  • Acuña, D.; Orchard, M., "Near-Instantaneous Battery End-of-Discharge Prognosis via Uncertain Event Likelihood Functions," ISA Transactions, Vol. 135, pp. 199-212, 2023. DOI:  https://doi.org/10.1016/j.isatra.2022.09.040

  • Torres, J.; Orchard, M.; Torres-Torriti, M.; Auat, F., "GNSS-based estimation of average instantaneous power consumption in electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 70, no. 9, pp. 9281-9290, 2023. DOI:  https://doi.org/10.1109/TIE.2022.3206748

  • Tamssaouet, F.; Nguyen, K.; Medjaher, K.; Orchard, M., "System-level failure prognostics: Literature review and main challenges," Journal of Risk and Reliability, Vol. 237, Issue 3, pp. 524-545, 2023.  DOI: https://doi.org/10.1177/1748006X221118448

  • Alvarado, D.; Moreno, D.; Orchard, M.; Kirschen, D., "Cost-benefit Analysis of Maintenance Plans: Case Study of the Power System of a Large Industrial Facility," IEEE Transactions on Power Systems, Vol. 38, Issue 3, pp. 2046-2057, 2023. 
    DOI: https://doi.org/10.1109/TPWRS.2022.3185376

  • Ceballos, G.; Duarte-Mermoud, M.; Orchard, M.; Travieso-Torres, J.C., "Pitch Angle Control of an Airplane using Fractional Order Direct Model Reference Adaptive Controllers," Fractal and Fractional, 7, 342, 2023. DOI:  https://doi.org/10.3390/fractalfract7040342 .

  • Futalef, J.P.; Muñoz-Carpintero, D.; Rozas, H.; Orchard, M., "An online decision-making strategy for routing of electric vehicle fleets," Information Sciences, Vol. 625, pp. 715–737, 2023. DOI:  https://doi.org/10.1016/j.ins.2022.12.108

 

  • Kordestani, M.; Orchard, M.; Khorasani; K.; Saif, M., "An Overview of the State-of-the-Art in Aircraft Prognostic and Health Management Strategies," IEEE Transactions on Instrumentation & Measurement, Vol. 72, pp. 1-15, Art no. 3505215, 2023.
    DOI:  https://doi.org/10.1109/TIM.2023.3236342

  • Arias-Cazco, D.; Rozas, H.; Jimenez, D.; Orchard, M.; Estevez, C., “Unifying Criteria for Calculating the Levelized Cost of Driving in Electro-Mobility Applications,” World Electric Vehicle Journal, 13(7), 19, 2022. DOI:  https://doi.org/10.3390/wevj13070119

  • Yaqoob, M.; Lashab, A.; Vasquez, J.; Guerrero, J.; Orchard, M.; Bintoudi, A., "A Comprehensive Review on Small Satellite Electrical Power System," IEEE Transactions on Power Electronics, Vol. 37, Issue 10, pp. 12741-12762, 2022.
    DOI:  https://doi.org/10.1109/TPEL.2022.3175093

  • Kordestani, M.; Rezamand, M.; Orchard, M., Carriveau, R.; Ting, D.; Rueda, L.; Saif, M., "New Condition-based Monitoring and Fusion Approaches with a Bounded Uncertainty for Bearing Lifetime Prediction," IEEE Sensors Journal, Vol. 22, Issue 9, pp. 9078-9086, 2022. 
    DOI:  https://doi.org/10.1109/JSEN.2022.3159624

  • Videla, M.; Mendez, R.; Claveria, R.; Silva, J.; Orchard, M., "Bayesian inference in single-line spectroscopic binaries with a visual orbit," The Astronomical Journal, Vol. 163, No. 5, pp.1-29, 2022. DOI: https://doi.org/10.3847/1538-3881/ac5ab4

  • Jaramillo, F.; Gutiérrez, J.; Orchard, M.; Guarini, M.; Astroza, R., "A Bayesian approach for fatigue damage diagnosis and prognosis of wind turbine blades," Mechanical Systems and Signal Processing, Vol. 174, 109067 (pp. 1-18), 2022.
    DOI: https://doi.org/10.1016/j.ymssp.2022.109067

  • Travieso-Torres, J.; Aguila-Camacho, N.; Contreras, C.; Orchard, M., "Adaptive Passivity-based Control Extended for Unknown Control Direction," ISA Transactions, Vol. 122, pp. 398-408, 2022. DOI:  https://doi.org/10.1016/j.isatra.2021.04.028

  • Gonzalez, M.; Silva, J.; Videla, M.; Orchard, M., "Data-Driven Representations for Testing Independence: Modeling, Analysis and Connection with Mutual Information Estimation," IEEE Transactions on Signal Processing, Vol. 70, pp. 158-173, 2022. DOI: https://doi.org/10.1109/TSP.2021.3135689.

  • ​Tamssaouet, F.; Nguyen, K.; Medjaher, K.; Orchard, M., "Fresh New Look on System-level Prognostic: Handling Multi-component Interactions, Mission Profile Impacts, and Uncertainty Quantification," International Journal of Prognostics and Health Management, Vol. 12, Issue 2, 2021. DOI: https://doi.org/10.36001/IJPHM.2021.v12i2.2777

  • Martinez-Gomez, M.; Navas, A.; Orchard, M.; Bozhko, S.; Burgos-Mellado, C.; Cardenas, R., "Multi-Objective Finite-Time Control for the Interlinking Converter on Hybrid AC/DC Microgrids," IEEE Access, Vol. 9, pp. 116183-116193, 2021. DOI:  https://doi.org/10.1109/ACCESS.2021.3105649

  • Jaras, I.; Harada, T.; Orchard, M.; Maldonado, P.; Vergara, R., "Extending the integrate-and-fire model to account for metabolic dependencies," European Journal of Neuroscience, Vol. 54, Issue 4, pp. 5249–5260, 2021. DOI: https://doi.org/10.1111/ejn.15326​​​

  • Rozas, H.; Muñoz-Carpintero, D.; Sáez. D.; Orchard, M., "Solving in Real-time the Dynamic and Stochastic Shortest Path Problem for Electric Vehicles by a Prognostic Decision Making Strategy," Expert Systems with Applications, Vol. 184, 115489, 2021. DOI: https://doi.org/10.1016/j.eswa.2021.115489

  • Villegas, C.; Méndez, R.; Silva, J.; Orchard, M., "Bayes-based orbital elements estimation in triple hierarchical stellar systems," Publications of the Astronomical Society of the Pacific, Vol. 133, No. 1025, 074501, 2021. DOI:  https://doi.org/10.1088/1538-3873/ac0239.

  • Kordestani, M.; Saif, M.; Orchard, M.; Razavi-Far, R.; Khorasani, K., "Failure Prognosis with Some Applications – A Survey of Recent Literature," IEEE Transactions on Reliability, Vol. 70, Issue 2, pp. 728-748, 2021. DOI: https://doi.org/10.1109/TR.2019.2930195

  • Tamssaouet, F.; Nguyen, K.; Medjaher, K.; Orchard, M., "Degradation Modeling and Uncertainty Quantification for System-Level Prognostics," IEEE Systems Journal, Vol. 15, Issue 2, pp. 1628-1639, 2021. DOI: https://doi.org/10.1109/JSYST.2020.2983376

  • Tamssaouet, F.; Nguyen, K.; Medjaher, K.; Orchard, M., "Online joint estimation and prediction for system-level prognostics under component interactions and mission profile effects," ISA Transactions, Vol. 113, pp. 52-63, 2021. DOI: https://doi.org/10.1016/j.isatra.2020.05.002

  • Rozas, H.; Troncoso-Kurtovic, D.; Ley, C.; Orchard, M., "Lithium-Ion Battery State-of-Latent-Energy (SoLE): A Fresh New Look to the Problem of Energy Autonomy Prognostics in Storage Systems," Journal of Energy Storage, Vol. 40, 102735, 2021. DOI: https://doi.org/10.1016/j.est.2021.102735

  • Ley, C.; Orchard, M., "Simultaneous Inference of Lithium-Ion Battery Polarising Impedance Surface and Capacity Degradation using a Hybrid Neural Adaptive State Space Model," Journal of Energy Storage, Vol. 36, 102370, 2021. DOI: https://doi.org/10.1016/j.est.2021.102370

 

  • Rezamand, M.; Kordestani, M.; Carriveau, R.; Ting, D.; Orchard, M.; Saif, M., "Improved Remaining Useful Life Estimation of Wind Turbine Drivetrain Bearings Under Varying Operating Conditions (VOC)," IEEE Transactions on Industrial Informatics, Vol. 17, Issue 3, pp. 1742-1752, 2021. DOI: https://doi.org/10.1109/TII.2020.2993074

  • Acuña, D.; Orchard, M.; Wheeler, P., "Computation of Time Probability Distributions for the Occurrence of Uncertain Future Events," Mechanical Systems and Signal Processing, Vol. 150, 107332, 2021. DOI: https://doi.org/10.1016/j.ymssp.2020.107332

  • Rezamand, M.; Kordestani, M.; Carriveau, R.; Ting, D.; Orchard, M.; Saif, M., "Critical Wind Turbine Components Prognostics: A Comprehensive Review," IEEE Transactions on Instrumentation & Measurement, Vol 69, Issue 12, pp. 9306-9328, 2020. DOI: https://doi.org/10.1109/TIM.2020.3030165

  • Paccha-Herrera. E.; Calderón-Muñoz, W.; Orchard, M.; Jaramillo, F.; Medjaher, K., "Thermal modeling approaches for a LiCoO2 lithium-ion battery. A comparative study with experimental validation," Batteries, 6(3), 40, 2020. DOI: https://dx.doi.org/10.3390/batteries6030040

  • Díaz, C.; Quintero, V.; Pérez, A.; Jaramillo, F.; Burgos-Mellado, C.; Rozas, H.; Orchard, M.; Sáez, D.; Cárdenas, R., "Particle-filtering-based Prognostics for the State of Maximum Power Available in Lithium-Ion Batteries at Electromobility Applications" IEEE Transactions on Vehicular Technology, Vol. 69, Issue 7, pp. 7187-7200, 2020. DOI: https://doi.org/10.1109/TVT.2020.2993949

  • Rozas, H.; Jaramillo, F.; Pérez, A.; Jimenez, D.; Orchard, M.; Medjaher, K., "A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms," Mechanical Systems and Signal Processing, Vol. 135, 106421, 2020. DOI: https://doi.org/10.1016/j.ymssp.2019.106421

  • Aguila-Camacho, N.; Duarte-Mermoud, M.; Orchard, M., "Fractional order controllers for throughput and product quality control in a grinding mill circuit," European Journal of Control, Vol. 51, pp. 122-134, 2020. DOI:  https://doi.org/10.1016/j.ejcon.2019.08.002

  • Orchard, M.; Muñoz-Poblete, C.; Huircan, JI.; Galeas, P.; Rozas, H., "Harvest Stage Recognition and Potential Fruit Damage Indicator for Berries based on Hidden Markov Models and the Viterbi Algorithm," Sensors, 19(20), 4421, 2019. DOI: https://doi.org/10.3390/s19204421

 

  • Clavería, R.; Mendez, R.; Silva, J.; Orchard, M., "Visual binary stars with partially missing data: Introducing multiple imputation in astrometric analysis," Publications of the Astronomical Society of the Pacific, 131:084502, no. 1002, pp. 1-19, 2019. DOI: https://doi.org/10.1088/1538-3873/ab22e2

 

  • Quintero, V.; Estevez, C.; Orchard, M.; and Pérez, A., "Improvements of Energy-Efficient Techniques in WSNs: A MAC-Protocol Approach," IEEE Communications Surveys and Tutorials, vol. 21, Issue 2, pp. 1188-1208, 2019. DOI: https://doi.org/10.1109/COMST.2018.2875810 

 

  • Pizarro-Carmona, V.; Cortés-Carmona, M.; Palma-Behnke, R.; Calderón-Muñoz, W.; Orchard, M.; Estévez, P., "An Optimized Impedance Model for the Estimation of the State-of-Charge  of a Li-Ion Cell: The Case of a LiFePO4 (ANR26650)," Energies , 12(4), 681, 2019. DOI: https://doi.org/10.3390/en12040681

  • Kordestani, M.; Zanj, A.; Orchard, M.; and Saif, M., "A Modular Fault Diagnosis and Prognosis Method for Hydro-control Valve System based on Redundancy in Multi-Sensor Data Information," IEEE Transactions on Reliability, vol. 68, Issue 1, pp. 330-341, 2019. DOI: https://doi.org/10.1109/TR.2018.2864706

  • Sierra, G.; Orchard, M.; Goebel, K.; Kulkarni, C., "Battery Health Management for Small-size Rotary-wing Electric Unmanned Aerial Vehicles: An Efficient Approach for Constrained Computing Platforms," Reliability Engineering and System Safety, vol. 182, pp. 166-178, 2019. DOI: https://doi.org/10.1016/j.ress.2018.04.030

  • Quintero, V.; Perez, A.; Estevez, C.; Orchard, M., "State-of-Charge Estimation to Improve Decision-making by MAC protocols used in WSNs," Electronics Letters , vol. 55, Issue 3, pp. 161-163, 2019. DOI: https://doi.org/10.1049/el.2018.7666

  • Acuña, D.; Orchard, M.; Saona, R., "Conditional Predictive Bayesian Cramér-Rao Lower Bounds for Prognostic Algorithms Design," Applied Soft Computing, vol. 72, pp. 647-665, 2018. DOI: https://doi.org/10.1016/j.asoc.2018.01.033

  • Espinoza, S.; Silva, J.; Mendez, R.; Lobos, R.; Orchard, M., "Optimality of the Maximum Likelihood estimator in Astrometry," Astronomy and Astrophysics, vol. 616, A95, 2018. DOI: https://doi.org/10.1051/0004-6361/201732537

  • Perez, A.; Quintero, V.; Jaramillo, F.; Rozas, H.; Jimenez, D.; Orchard, M.; Moreno, R., "Characterization of the Degradation Process of Lithium-ion Batteries when Discharged at Different Current Rates," Proceedings of the iMechE, Part I: Journal of Systems and Control Engineering, vol. 232, Issue 8, pp. 1075-1089, 2018. DOI: https://doi.org/10.1177/0959651818774481

 

  • Jaramillo, F.; Orchard, M.; Muñoz, C.; Zamorano, M.; Antileo, C., "Advanced strategies to improve nitrification process in sequencing batch reactors - A review," Journal of Environmental Management, vol.218, pp. 154-164, 2018. DOI: https://doi.org/10.1016/j.jenvman.2018.04.019  

  • Tobar, F.; Castro, I.; Silva, F.; and Orchard, M., "Improving Battery Voltage Prediction in an Electric Bicycle Using Altitude Measurements and Kernel Adaptive Filters," Pattern Recognition Letters, vol. 105, pp. 200-206, 2018. DOI: https://doi.org/10.1016/j.patrec.2017.09.009

  • Jaras, I.; Orchard, M., "Performance Assessment of Sequential Bayesian Processors based on Probably Approximately Correct Computation and Information Theory," Electronics Letters, vol. 54, Nro. 6, pp. 357-359, 2018. DOI: https://doi.org/10.1049/el.2017.4159

  • Jaramillo, F.; Orchard, M.; Munoz, C.; Antileo, C.; Saez, D.; and Espinoza, P., "On-line estimation of the aerobic phase length for partial nitrification processes in SBR based on features extraction and SVM classification," Chemical Engineering Journal, vol. 331, pp. 114-123, 2018. DOI: https://doi.org/10.1016/j.cej.2017.07.185

  • Mendez, R.; Clavería, R.; Orchard, M.; and Silva, J., "Orbits for eighteen visual binaries and two double-line spectroscopic binaries observed with HRCAM on the CTIO SOAR 4m telescope, using a new Bayesian orbit code based on Monte-Carlo Markov-Chain," The Astronomical Journal, vol. 154, No. 5, 2017. DOI: https://doi.org/10.3847/1538-3881/aa8d6f

  • Barrios, P.; Adams, M.; Leung, K.; Inostroza; F.; Naqvi, G.; and Orchard, M., "Metrics for Evaluating Robotic Feature based Mapping Performance," IEEE Transactions on Robotics, vol. 33, Issue 1, pp. 198-213, 2017. DOI: https://doi.org/10.1109/TRO.2016.2627027

  • Aguila-Camacho, N.; Duarte-Mermoud, M.; Le Roux, J.; and Orchard, M., "Control of a Grinding Mill Circuit using Simple Fractional Order Controllers," Journal of Process Control, vol. 53, pp. 80-94, 2017. DOI: https://doi.org/10.1016/j.jprocont.2017.02.012

  • Torres, B.; Quintero, V.; Estevez, C.; Orchard, M.; Azurdia, C., "SoC Control for Improved Battery Life and Throughput Performance under VST-TDMA," Electronics Letters, vol. 53, Issue 3, pp. 183-185, 2017. DOI: https://doi.org/10.1049/el.2016.3659

  • Acuña, D.; and Orchard, M., "Particle-Filtering-Based Failure Prognosis via Sigma-Points: Application to Lithium-Ion Battery State-of-Charge Monitoring," Mechanical Systems and Signal Processing, vol. 85. pp. 827-848, 2017. DOI: https://doi.org/10.1016/j.ymssp.2016.08.029

  • Ley, C. and Orchard, M., "Chi-squared smoothed adaptive particle-filtering based prognosis," Mechanical Systems and Signal Processing, vol. 82, pp. 148–165, 2017. DOI: https://doi.org/10.1016/j.ymssp.2016.05.015

  • Roje, T.; Marín, L.; Sáez, D.; Orchard, M.; and Jiménez-Estévez, G., "Consumption modeling based on Markov chains and Bayesian networks for a demand side management design of isolated microgrids," International Journal of Energy Research, vol. 41, Issue 3, pp. 365-376, 2017. DOI: https://doi.org/10.1002/er.3607

  • Díaz, M.; Zagal, J.C.; Falcon, C.; Stepanova, M.; Valdivia, J.A.; Martínez-Ledesma, M.; Díaz, J.; Romanova, N.; Pacheco, E.; Milla, M.; Orchard, M.; Silva, J.; Mena, F.P.; and Jaramillo, F., "New opportunities offered by cubesats for space research in Latin America: the SUCHAI project case," Advances in Space Research, vol. 58, Issue 10, pp. 2134–2147, 2016. DOI: https://doi.org/10.1016/j.asr.2016.06.012

  • Echeverría, A.; Silva, J.; Mendez, R.; and Orchard, M., "Analysis of the Bayesian Cramér-Rao lower bound in Astrometry: Studying the impact of prior information in the location of an object," Astronomy and Astrophysics, vol. 594, A111, 2016. DOI: https://doi.org/10.1051/0004-6361/201628220

  • Perez, A.; Moreno, R.; Moreira, R.; Orchard, M.; and Strbac, G., "Effect of Battery Degradation on Multi-Service Portfolios of Energy Storage," IEEE Transactions on Sustainable Energy, vol. 7, Issue 4, pp. 1718-1729, 2016. DOI: https://doi.org/10.1109/TSTE.2016.2589943

  • Mundnich, K. and Orchard, M., "Early online detection of high volatility clusters using Particle Filters," Expert Systems with Applications, 54: 228–240, 2016. DOI: https://doi.org/10.1016/j.eswa.2016.01.052

  • Reyes-Marambio, J.; Moser, F.; Gana, F.; Severino, B.; Calderón-Muñoz, W.; Palma-Behnke, R.; Estevez, P.; Orchard, M.; Cortés, M., "A fractal time thermal model for predicting the surface temperature of air-cooled cylindrical Li-ion cells based on experimental measurements," Journal of Power Sources, 161:349-363, 2016. DOI: https://doi.org/10.1016/j.jpowsour.2015.12.037

  • Burgos, C.; Orchard, M.; Kazerani, M.; Cárdenas, R.; and Sáez, D., "Particle-Filtering-Based Estimation of Maximum Available Power State in Lithium-Ion Batteries," Applied Energy, 161:349-363, 2016. DOI: https://doi.org/10.1016/j.apenergy.2015.09.092

  • Lobos, R.; Silva, J.; Mendez, R.; and Orchard, M., "Performance analysis of the Least-Squares estimator in astrometry," Publications of the Astronomical Society of the Pacific, 127: 1166-1182, Nov. 2015. DOI: https://doi.org/10.1086/683841

  • Pola, D.; Navarrete, H.; Orchard, M.; Rabié, R.; Cerda, M.; Olivares, B.; Silva, J.; Espinoza, P.; and Pérez, A., "Particle-filtering-based Discharge Time Prognosis for Lithium-Ion Batteries with a Statistical Characterization of Use Profiles," IEEE Transactions on Reliability, vol. 64, Issue 2, pp. 710-720, June 2015. DOI: https://doi.org/10.1109/TR.2014.2385069

  • Orchard, M.; Lacalle, M.; Olivares, B.; Silva, J.; Palma, R.; Estévez, P.; Severino, B.; Calderon-Muñoz, W.; and Cortés M., "Information-Theoretic Measures and Sequential Monte Carlo Methods for Detection of Regeneration Phenomena in the Degradation of Lithium-Ion Battery Cells," IEEE Transactions on Reliability, vol. 64, Issue 2, pp. 701-709, June 2015. DOI: https://doi.org/10.1109/TR.2015.2394356

  • Burgos, C.; Sáez, D.; Orchard, M.; and Cárdenas, R., "Fuzzy Modelling for the State-of-Charge Estimation of Lead-Acid Batteries," Journal of Power Sources, vol. 274, pp. 355-366, Jan 2015. DOI: https://doi.org/10.1016/j.jpowsour.2014.10.036

  • Moya, J.; Ruiz-del-Solar, J.; Orchard, M.; Parra-Tsunekawa, I., "Fall Detection and Damage Reduction in Biped Humanoid Robots," International Journal of Humanoid Robotics, vol. 12, Issue 1, Jan 2015. DOI: https://doi.org/10.1142/S0219843615500012

  • Severino, B.; Gana, F.; Palma-Behnke, R.; Estévez, P.; Calderón, W.; Orchard, M.; Cortés, M.; Reyes, J., "Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms," Journal of Power Sources, vol. 26, Issue 1, pp. 288-299, December 2014. DOI: https://doi.org/10.1016/j.jpowsour.2014.05.088

  • Zhang, B.; Orchard, M.; Saha, B.; Saxena, A.; Jin, Y.; and Vachtsevanos, G.,  "A Verification Framework with Application to a Propulsion System," Expert Systems with Applications, vol. 41, Issue 13, pp. 5669-5679, October 2014. DOI: https://doi.org/10.1016/j.eswa.2014.03.017

  • Mundnich, K.; Orchard, M.; Silva, J.; Parada, P., "Volatility Estimation of Financial Returns using Risk-Sensitive Particle Filters," Studies in Informatics and Control, Vol. 22, No. 3, pp. 297-306, September 2013. DOI: https://doi.org/10.24846/v22i3y201306

  • Orchard, M. and Hevia-Koch, P., "Risk Measures for Particle-filtering-based State-of-Charge Prognosis in Lithium-Ion Batteries," IEEE Transactions on Industrial Electronics, vol. 60, No. 11, pp.5260-5269, November 2013. DOI: https://doi.org/10.1109/TIE.2012.2224079

  • Olivares, B.; Cerda, M.; Orchard, M.; and Silva, J., “Particle-filtering-based Prognosis Framework for Energy Storage Devices with a Statistical Characterization of State-of-Health Regeneration Phenomena,” IEEE Transactions on Instrumentation & Measurement, vol. 62, Issue 2, pp. 364‑376, February 2013. DOI: https://doi.org/10.1109/TIM.2012.2215142

  • Chen, C.; Brown, D.; Sconyers, C.; Zhang, B.; Vachtsevanos, G.; and Orchard, M., “An integrated architecture for fault diagnosis and failure prognosis of complex engineering systems,” Expert Systems with Applications, vol. 39, Issue 10, pp. 9031‑9040, August 2012. DOI: https://doi.org/10.1016/j.eswa.2012.02.050

  • Chen, C.; Vachtsevanos, G.; Orchard, M., "Machine Remaining Useful Life Prediction: an Integrated Adaptive Neuro-Fuzzy and High-Order Particle Filtering Approach," Mechanical Systems and Signal Processing, vol. 28, pp. 597-607, April 2012. DOI: https://doi.org/10.1016/j.ymssp.2011.10.009

  • Tobar, F. and Orchard, M., "Study of Financial Systems Volatility Using Suboptimal Estimation Algorithms," Studies in Informatics and Control, vol. 21, Issue 1, pp. 59‑66, March 2012. DOI: https://doi.org/10.24846/v21i1y201207

  • Chen, C.; Vachtsevanos, G.; Orchard, M., “Machine Condition Prediction Based on Adaptive Neuro-Fuzzy and High-Order Particle Filtering," IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4353-4364, September 2011. DOI: https://doi.org/10.1109/TIE.2010.2098369

  • Zhang, B.; Sconyers, C.; Byington, C.; Patrick, R.; Orchard, M.; and Vachtsevanos, G., “A Probabilistic Fault Detection Approach: Application to Bearing Fault Detection,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 2011-2018, May 2011. DOI: https://doi.org/10.1109/TIE.2010.2058072

  • Orchard, M.; Tang, L.; Saha, B.; Goebel, K.; and Vachtsevanos, G., “Risk-Sensitive Particle-Filtering-based Prognosis Framework for Estimation of Remaining Useful Life in Energy Storage Devices,” Studies in Informatics and Control, vol. 19, Issue 3, pp. 209-218, September 2010. DOI: https://doi.org/10.24846/v19i3y201001

  • Zhang, B.; Khawaja, T.; Patrick, R.; Vachtsevanos, G.; Orchard, M., and Saxena, A., "A Novel Blind Deconvolution De-Noising Scheme in Failure Prognosis," Transactions of the Institute of Measurement and Control, vol. 32, Issue 1, pp. 3-30, February 2010. DOI: https://doi.org/10.1177/0142331209357844

  • Orchard, M.; Tobar, F.; and Vachtsevanos, G., “Outer Feedback Correction Loops in Particle Filtering-based Prognostic Algorithms: Statistical Performance Comparison,” Studies in Informatics and Control, vol. 18, Issue 4, pp. 295-304, December 2009.

  • Orchard, M. and Vachtsevanos, G., “A Particle Filtering Approach for On-Line Fault Diagnosis and Failure Prognosis,” Transactions of the Institute of Measurement and Control, vol. 31, no. 3-4, pp. 221-246, June 2009. DOI: https://doi.org/10.1177/0142331208092026

  • Zhang, B.; Khawaja, T.; Patrick, R.; Vachtsevanos, G.; Orchard, M., and Saxena, A., “Application of Blind Deconvolution Denoising in Failure Prognosis,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 2, pp. 303-310, February 2009. DOI: https://doi.org/10.1109/TIM.2008.2005963 (PDF)

  • Gonzalez G.D.; Orchard, M.; Cerda J.L.; Casali A.; and Vallebuona, G., “Local models for soft-sensors in a rougher flotation bank," Minerals Engineering, vol. 16, no.5, pp. 441-453, 2003. DOI: https://doi.org/10.1016/S0892-6875(03)00021-9

  • Dixon, J.; del Valle, Y.; Orchard, M.; Ortúzar, M.; Morán, L.; and Maffrand C., “A Full Compensating System for General Loads, Based on a Combination of Thyristor Binary Compensator, and a PWM-IGBT Active Power Filter,” IEEE Transactions on Industrial Electronics, vol. 50, no. 5, pp. 982-989, 2003. DOI: https://doi.org/10.1109/TIE.2003.817604

- J.R.R. Tolkien, The Fellowship of the Ring, 1954 -

“All we have to decide is what to do with the time that is given to us”

JOURNAL PUBLICATIONS

FCFM.png

Department of Electrical Engineering

Faculty of Physical and Mathematical Sciences

University of Chile

© 2023 by Marcos Orchard. Proudly created with Wix.com

bottom of page